Zarejestruj się
Masz już konto?
Zaloguj się
 
Partner strategiczny
Wsparcie żywieniowe Gruczoł krokowy Płuco i opłucna Pierś Przewód pokarmowy Układ moczowo-płciowego Narządy głowy i szyi Gruczoły wydzielania wewnętrznego Ginekologia onkologiczna Czerniak Mięsaki tkanek miękkich, kości i GIST Terapia wspomagająca Inne Hematologia
 
 
Wybrane mutacje związane z dużym ryzykiem wystąpienia nowotworów jelita grubego
więcej
 
Rak jelita grubego (RJG) zajmuje obecnie drugie miejsce pod względem śmiertelności wśród nowotworów w krajach rozwiniętych. Dwadzieścia, dwadzieścia pięć procent przypadków RJG to choroby dziedziczne. Często predyspozycja do RJG uwarunkowana jest jednogenowo, jak np. w zespole rodzinnej polipowatości gruczolakowatej jelit, gdzie istotna jest mutacja w genie APC. Kolejną genetyczną predyspozycją do RJG są dziedziczne mutacje w genie MUTYH. Nie zawsze RJG rozwija się na bazie polipowatości. Dziedziczny RJG niezwiązany z polipowatością (hereditary nonpolyposis colorectal cancer – HNPCC) stanowi 2–4% zachorowań na RJG. Najczęstszą postacią HNPCC jest tzw. syndrom Lyncha. Zespół ten jest spowodowany mutacją w genach naprawy DNA, tzw. genach MMR. Mutacje te, określane mianem dużego ryzyka, prowadzą do genomowej niestabilności w komórkach, która nadaje im fenotyp mutatorowy. Dużą część pozostałych dziedzicznych predyspozycji do rozwoju RJG przypisuje się kombinacji znacznie bardziej powszechnych zmian, w genach o niższej penetracji, które w sposób tylko umiarkowany zwiększają ryzyko zachorowania.
Źródło: Przegląd Gastroenterologiczny 1/2012

Justyna Klusek, Stanisław Głuszek, Jolanta Klusek

Przegląd Gastroenterologiczny 2012; 7 (1): 1–6
DOI (digital object identifier): 10.5114/pg.2012.27215
pliki PDF związane z artykułem:
- Wybrane mutacje.pdf  [0.10 MB]

Wstęp

Rak jelita grubego (RJG) zajmuje obecnie drugie miejsce pod względem śmiertelności wśród nowotworów w krajach rozwiniętych. Pomimo licznych badań wciąż nie dysponujemy pełną wiedzą na temat uwarunkowań genetycznych i szlaków biochemicznych zaangażowanych w rozwój tego typu neoplazji. Wynika to po części ze złożoności zmian prowadzących do rozwoju raka zarówno na poziomach transkrypcyjnym i translacyjnym, jak i na poziomie epigenetycznym (dziedziczenia pozagenowego) [1]. Coraz doskonalsze, bardziej zaawansowane narzędzia technologiczne, jakimi dysponuje genomika i proteomika, umożliwiają ciągły postęp w poznawaniu molekularnych mechanizmów kancerogenezy w jelicie grubym. Pełne zrozumienie tych procesów jest bardzo istotne w medycynie, gdyż znacznie ułatwi diagnostykę i leczenie RJG, a co za tym idzie – ograniczy liczbę pacjentów cierpiących na to schorzenie [1–3]. Możliwe będzie wprowadzenie skriningu genetycznego u wszystkich osób z historią występowania raka w rodzinie. Pozostaną jeszcze do rozwiązania problemy natury finansowej i technicznej w masowych badaniach genetycznych, niemniej poznanie genów odpowiedzialnych za tę chorobę jest bardzo istotnym krokiem naprzód w ograniczaniu umieralności z powodu nowotworów [4].

Mutacje w genie APC

Wśród przypadków RJG 20–25% stanowią stany dziedziczne [5]. Często predyspozycja do RJG uwarunkowana jest jednogenowo, jak np. w zespole rodzinnej polipowatości gruczolakowatej jelit (familial adenomatous polyposis – FAP). Istotą tej choroby jest obecność w jelicie grubym u ludzi młodych (około 20 lat) setek lub więcej polipów prowadzących do rozwoju nowotworu złośliwego w wieku około 40 lat, niemal w 100% przypadków niepoddawanych leczeniu [6, 7]. Stwierdzono również łagodną postać choroby (attenuated familial adenomatous polyposis – AFAP), w której liczba polipów jest mniejsza niż 100, objawy pojawiają się w późniejszym wieku, a nowotwór może się nie rozwijać aż do 50.–60. roku życia [8]. Zespół FAP odpowiada za niespełna 1% przypadków RJG i występuje przeważnie z częstością 1 na 10 000 urodzeń [7]. U podłoża FAP leżą różne rodzaje mutacji w genie supresorowym APC (adenomatous polyposis coli), w komórkach rozrodczych, dziedziczone jako wariant autosomalny dominujący genu [8]. Gen ten znajduje się na długim ramieniu chromosomu 5 (5q21-q22) i jego produkt białkowy jest negatywnym regulatorem szlaku transdukcji Wnt. Nazwa szlaku Wnt to połączenie nazw genów homologicznych należących do tego szlaku sygnałowego: wingless – u muszek Drosophila i Int – u kręgowców. Do szlaku Wnt należą geny kodujące wiele białek pełniących ważne funkcje w embriogenezie, tzw. morfogeny odpowiedzialne za rozplanowanie narządów i tkanek w obrębie rozwijającego się ciała. Wiadomo, że ich rola nie kończy się na embriogenezie, również w dorosłym życiu odgrywają istotne role oraz biorą udział w kancerogenezie [7].

Mutacje w genie APC obserwuje się też w komórkach somatycznych, a nie rozrodczych w znaczącej liczbie przypadków (60–80%) sporadycznego RJG [8].

W Chinach zbadano mutacje genu APC metodą bezpośredniego sekwencjonowania u niespokrewnionych pacjentów ze zdiagnozowaną FAP. Wśród 14 badanych osób stwierdzono mutacje punktowe w genie APC typu: zmiany ramki odczytu (6 pacjentów), mutacje zaburzające splicing, czyli obróbkę genu polegającą na wycinaniu intronów pomiędzy sekwencjami kodującymi genu, (2 pacjentów) oraz mutacje nonsensowne (1 pacjent). U pozostałych zaobserwowano delecje dużych fragmentów genu APC [7].

W 1/3 komórek rozrodczych z mutacjami genu APC stwierdza się ich obecność w obrębie tzw. gorących punktów mutacji. Analizując mutacje genu APC w zespole FAP, odnotowano istotne zależności pomiędzy miejscem mutacji a fenotypem chorobowym (tab. I) [8].

Większość mutacji w tym genie prowadzi do utraty aktywności biologicznej białka APC poprzez skrócenie jego łańcucha aminokwasowego [7, 8]. Produkt białkowy genu APC, liczący 2843 aminokwasy [7], ma wielorakie domeny funkcjonalne i współdziała z licznymi białkami w komórce, biorąc udział w takich procesach, jak adhezja komórek, utrzymywanie stabilności chromosomów i integralności cytoszkieletu, a także w regulacji cyklu komórkowego [9]. Obecność takiego zmutowanego białka APC w komórce pośrednio zaburza funkcje kadheryn, co w efekcie upośledza różnicowanie komórek i ich wzajemne przyleganie, nadając komórkom cechę inwazyjności [6]. W wyniku nieprawidłowego wiązania się zmutowanego APC do mikrotubul wrzeciona kariokinetycznego komórki po podziale otrzymują nierówno rozdzielony materiał genetyczny oraz pojawiają się zaburzenia kariotypu [6].

Białko APC jest kluczowym elementem kompleksu destrukcyjnego -kateniny. Kieruje serią zdarzeń fosforylacji, które ostatecznie prowadzą do proteolizy tego białka. W komórkach ze zmutowanym białkiem APC następuje akumulacja -kateniny, a następnie jej translokacja do jądra, gdzie prawdopodobnie oddziałuje pośrednio z genami regulacji cyklu komórkowego jako element szlaku sygnałowego Wnt [10]. Poprzez akumulację -kateniny dochodzi do rozregulowania szlaku sygnałowego Wnt, ważnego w procesach zarówno embriogenezy, jak i kancerogenezy, czego następstwem jest inicjacja kancerogenezy [10]. Znane są przekonujące dowody wskazujące na rozregulowany szlak sygnałowy Wnt/-katenina jako czynnik inicjujący formowanie gruczolaka jelita grubego w następstwie utraty aktywności APC. Pomimo tych dowodów wyniki badań dotyczące pacjentów z zespołem FAP dopuszczają możliwość, że utrata aktywności APC nie jest wystarczająca do zaburzenia sygnałowania Wnt/-katenina. Wyniki badań Phelpsa i wsp. wspierają hipotezę, że utrata aktywności APC stabilizuje stężenie -kateniny zawartej w cytoplazmie, ale nie wzmaga transportu do jądra czy proliferacji komórek [9]. Jądrowa akumulacja -kateniny i towarzysząca jej wzmożona proliferacja wymagają aktywności onkogenicznego białka KRAS. Białko to oddziałuje za pośrednictwem efektora RAF1 z -kateniną i kieruje ją do jądra komórkowego [10]. W badaniach prowadzonych na myszach dowiedziono, że współobecność mutacji w genach APC i KRAS powoduje znaczne zwiększenie rozmiarów gruczolaków, ich liczby i inwazyjności [11]. Zwykle role nieaktywnego APC i mutacji KRAS w kancerogenezie rozpatrywane są niezależnie. Phelps i wsp. wykazali jednak, że pełnią one odległe, ale ważne funkcje w tym samym procesie – kontrolowaniu jądrowej akumulacji -kateniny [9].

Mutacje w genie KRAS

KRAS należy do rodziny genów RAS kodujących białka o aktywności GTP-azy, z charakterystyczną domeną katalityczną G [12, 13]. Białko KRAS zlokalizowane jest po wewnętrznej stronie błony komórkowej i uczestniczy w wielu ważnych szlakach sygnałowych. Pozostaje nieaktywne do czasu związania GTP. Wtedy następuje zmiana konformacji i aktywacja białka KRAS. Aktywne KRAS oddziałuje z kolei z licznymi białkami typu GAP (GTP-ase activating proteins), które zwiększają aktywność GTP-azową białek RAS do 100 000 razy [12]. Wewnętrzna aktywność GTP-azowa odszczepia resztę fosforanową od związanego trifosforanu guaniny i przekształca go w GDP, czego efektem jest ponowna inaktywacja KRAS [13]. Aktywność GTP-azy jest dla KRAS „sekundnikiem” odmierzającym czas aktywności białka.

Białko KRAS odgrywa rolę swego rodzaju „przełącznika” w kontroli cyklu komórkowego. Prawidłowe białko KRAS w optymalnych warunkach promuje postęp cyklu komórkowego, ale w odpowiedzi na bodźce stresowe, takie jak promieniowanie ultrafioletowe, promieniowanie jonizujące, szok cieplny czy niektóre cytokiny, powstrzymuje wzrost komórki lub „przełącza” ją na szlak apoptozy. W ten sposób prawidłowe białko KRAS pełni funkcję supresora nowotworów. Mutacje w genie KRAS powodują, że nabiera on właściwości onkogenicznych. Mutacje obserwowane w onkogenicznych formach białek RAS upośledzają aktywność GTP-azy i czynią je niewrażliwymi na oddziaływanie białek GAP. Taka zmutowana forma KRAS jest więc cały czas aktywna, co prowadzi do rozregulowania szlaków komórkowych, w których bierze udział białko KRAS [12]. Wykazano ponadto w badaniach na fibroblastach, że zmutowany KRAS zwiększa ekspresję metaloproteinazy 2 (MMP2), co wzmaga inwazyjność komórek rakowych [14]. Mutacje punktowe aktywujące białko KRAS obserwuje się w wielu typach nowotworów u ludzi, w tym w wielu przypadkach RJG. Mutacje te zwykle znajdują się w pobliżu miejsca kodującego region wiążący GTP w białku KRAS, co zmniejsza zdolność do hydrolizy GTP.

W progresji RJG można wyróżnić trzy etapy, z których w pierwszym obserwuje się zwykle niewielkie, łagodne zmiany w postaci polipów i gruczolaków. W tym stadium mutacje w genie KRAS wykrywa się sporadycznie. W drugim etapie obecne są małe zgrupowania komórek rakowych w obrębie jelita grubego, z których może się rozwinąć w trzecim etapie inwazyjny rak. W tych tkankach nowotworowych mutacje w genie KRAS obserwuje się znacznie częściej niż w komórkach gruczolaka [12].

Mutacje w genie MUTYH

Kolejną genetyczną predyspozycją do RJG są dziedziczne mutacje w genie MUTYH. Już w 2002 roku opisano polipowatość związaną z genem MUTYH, w skrócie MAP (MUTYH Associated Polyposis). Obecnie jest ona uważana za przyczynę 0,3–1% wszystkich przypadków RJG. Jest to gen kodujący glikozydazę uczestniczącą w naprawie DNA przez wycinanie nieprawidłowych nukleotydów guaninowych [15]. Białko kodowane w genie MUTYH „skanuje” nowo zsyntetyzowaną nić w poszukiwaniu błędnie sparowanych lub uszkodzonych nukleotydów guaninowych i wycina je, co zapobiega transwersji G:C w A:T [8, 15]. Zmiany w obrębie tego genu dziedziczą się w sposób autosomalny recesywny i mogą prowadzić do różnych mutacji somatycznych, sprzyjają zwłaszcza mutacjom we wspomnianym genie APC. Opisano ponad 80 różnych mutacji w genie MUTYH u pacjentów z zespołem MAP, z czego dwie pojawiają się szczególnie często [16]. Ryzyko rozwoju nowotworu u nosicieli mutacji w pojedynczym allelu genu MUTYH jest umiarkowanie zwiększone w stosunku do osób z prawidłowym genem MUTYH, ale mutacja obejmująca oba allele tego genu predysponuje w dużym stopniu do rozwoju polipowatości gruczolakowatej i raka. U około 1/3 tych biallelicznych nosicieli diagnozuje się RJG, zwykle w wieku około 45–50 lat [8]. U pacjentów w wieku 60 lat penetracja genu MUTYH zmutowanego w obu allelach wynosi 100% [17].

Obecnie trwają badania dotyczące rokowania u pacjentów chorych na RJG rozwiniętego na bazie polipowatości rodzinnej związanej z genem MUTYH w porównaniu z pacjentami z RJG bez mutacji w tym genie. Wyniki badań Nielsena i wsp. wskazują na statystycznie istotnie większe prawdopodobieństwo przeżycia europejskich pacjentów z mutacją w genie MUTYH niż bez mutacji. Pięcioletnie przeżycie w grupie chorych na RJG z mutacją MUTYH wyniosło w badaniu 73%, natomiast w grupie pacjentów z RJG bez mutacji MUTYH – 63%. Wynika to prawdopodobnie z silniejszej odpowiedzi immunologicznej u pacjentów z uszkodzeniami systemów naprawczych DNA [15].

Mutacje w genach MMR

Nie zawsze RJG rozwija się na bazie polipowatości. Przypadki dziedzicznego RJG niezwiązanego z polipowatością (hereditary nonpolyposis colorectal cancer – HNPCC) stanowią 2–4% zachorowań na RJG [8]. Predysponuje on także do występowania innych rodzajów nowotworów, np. macicy, żołądka, jelita cienkiego, jajników, nerki, mózgu [8, 18–20].

Najczęściej spotykaną postacią HNPCC jest tzw. syndrom Lyncha [19]. Zespół ten jest spowodowany mutacją w genach naprawy źle sparowanych zasad w DNA, tzw. genach MMR (MisMatch repair), które w formie fizjologicznej rozpoznają i usuwają nieprawidłowo sparowane nukleotydy lub naprawiają insercje czy delecje wywołane poślizgiem polimerazy DNA [18]. Stwierdzono duże, 60–85-procentowe ryzyko rozwoju RJG u nosicieli mutacji w genach MMR [21]. Ponieważ zmiany obecne są już w komórkach rozrodczych, mutacja pojawia się we wszystkich komórkach somatycznych chorego i jest zespołem dziedzicznym [18, 20]. Mutacje w tych genach dziedziczą się jako cecha autosomalna dominująca [8, 18, 19, 22], wykazują ponadto wysoką penetrację w populacji, co skutkuje tym, że choroba z dużą częstością dotyka członków wielu pokoleń rodziny [19]. Geny MMR stanowią wysoce konserwatywny ewolucyjnie mechanizm unikania błędów w replikacji DNA. Dzięki ich obecności wierność kopiowania sekwencji DNA wzrasta nawet 1000-krotnie [22, 23]. Dlatego inaktywacja genów MMR nadaje komórkom fenotyp mutatorowy, w którym obserwuje się znacznie przyspieszone tempo mutacji spontanicznych [23]. Należą do nich m.in. geny kodujące rodzinę białek MSH (ssacze homologi genów MutS) i rodzinę białek MLH (ssacze homologi genów MutL). Białka MSH zawsze działają jako heterodimery MutS, których obligatoryjną składową jest produkt białkowy genu MSH2 dimeryzujący z białkiem MSH6 lub MSH3. Takie heterodimery rozpoznają i wiążą się z nieprawidłowo sparowanymi zasadami w DNA, co sygnalizuje obszar błędu replikacyjnego, chociaż do samej naprawy wymagane są dodatkowe czynniki, m.in. białka z rodziny MLH. W skład ich heterodimerów zawsze wchodzi białko MLH1, które może być powiązane z PMS2, PMS1 lub MLH3. Najlepiej poznany jest heterodimer MLH1-PMS2, mający aktywność endonukleazy, który oddziałuje z kompleksem MutS-DNA i wraz z innymi czynnikami (jak ExoI czy PCNA) wycina nieprawidłowo sparowane zasady. Kolejnym etapem, którym kierują odpowiednie enzymy, jest resynteza wyciętego fragmentu, wymagana do przejścia komórki z fazy S cyklu, poprzez G2, do mitozy [20]. Geny MMR, w których najczęściej pojawiają się mutacje w zespole Lyncha, to MLH1 i MSH2, niewiele rzadziej mutacje występują w genach MSH6 i PMS2. Uogólniając: mutacje w każdym z tych genów prowadzą do upośledzenia czynności kodowanych przez nie białek naprawy DNA [18]. W nowotworach, które rozwijają się z powodu zaburzeń genów MMR, mutacje genetyczne kumulują się szczególnie w krótkich, powtarzających się sekwencjach mikrosatelitarnego DNA [18, 22]. W większości przypadków nagromadzenie mutacji powoduje delecje mononukleotydowe lub większych fragmentów mikrosatelitarnego DNA, czego skutkiem jest jego skrócenie [20]. Wszystko to prowadzi do tzw. niestabilności mikrosatelitarnej [18, 22]. Jest ona na tyle ściśle powiązana z inaktywacją genów MMR, że służy jako marker diagnostyczny dla utraty aktywności MMR w komórkach rakowych [23]. Wysoki stopień takiej niestabilności mikrosatelitarnej obserwuje się zwłaszcza w przypadku mutacji genów MLH1 i MLH2 [14], która prowadzi do całkowitej utraty aktywności systemu MMR [20]. Niestabilność mikrosatelitarna nie jest tak powszechna w sporadycznych przypadkach RJG. Jeśli się zdarza, to najczęściej przyczyną jest nie tyle mutacja w jednym z genów MMR, co hipermetylacja promotora genu MLH1, zaburzająca jego ekspresję.

Opisywane dotąd mutacje w genach supresorowych i protoonkogenach, takich jak KRAS i APC czy p53, w zespole Lyncha pojawiają się bardzo rzadko. Co ciekawe, pacjenci z zespołem Lyncha przeżywają dłużej niż pacjenci ze sporadycznym nowotworem jelita grubego. Proponowano różne teorie wyjaśniające to zjawisko, m.in. zwiększoną infiltrację guza limfocytami T czy zmniejszoną żywotność komórek nowotworowych z powodu niestabilności genetycznej.

Często w piśmiennictwie naukowym terminów HNPCC i zespół Lyncha używa się zamiennie, jednak – jak podkreślają Drescher i wsp. – HNPCC jest pojęciem szerszym [18]. Obejmuje bowiem również przypadki RJG o cechach przypominających zespół Lyncha, spełniających wszystkie kryteria amsterdamskie służące do rozpoznawania zespołu Lyncha, ale bez mutacji w genach MMR. Tego typu jednostki chorobowe określono wspólną nazwą rodzinnego RJG typu X. Nadal nie są niestety znane ich szlaki kancerogenezy ani podłoże genetyczne [24].

Cytogenetyczne szlaki metaboliczne i epigeneza w rozwoju raka jelita grubego

Opisane mutacje stanowią duże ryzyko rozwoju RJG. Prowadzą one bowiem często do genomowej niestabilności w komórkach, która nadaje im fenotyp mutatorowy [25].

Niestabilność chromosomalna (chromosomal instability – CIN) przejawia się częstymi mutacjami chromosomowymi, takimi jak translokacje, zwielokrotnienie czy utrata całych chromosomów lub ich fragmentów. Niestabilność chromosomalna może promować kancerogenezę zarówno poprzez utratę genów supresorowych nowotworu, jak i zwielokrotnienie liczby kopii onkogenów [26, 27]. Przyczyny niestabilności chromosomalnej pozostają wciąż tematem badań, ale prawdopodobnie należą do nich m.in. mutacje genów kontroli cyklu komórkowego, takich jak APC czy KRAS [26], dysfunkcja telomerów lub nieprawidłowa liczba i funkcja centrosomów [27].

Niestabilność mikrosatelitarna (microsatellite instability – MSI) obejmuje zmiany w kodujących i niekodujących sekwencjach mikrosatelitarnych w chromosomach, polegające na utracie lub zwielokrotnieniu liczby powtórzeń nukleotydów, nadające komórce fenotyp mutatorowy [26, 27]. Może być efektem poślizgu polimerazy DNA podczas kopiowania matrycowego DNA lub błędów podczas rekombinacji odcinków DNA [27]. Błędy powstałe w tych procesach eliminowane są przy udziale genów naprawczych MMR, dlatego uważa się, że jedną z przyczyn MSI są mutacje w tych właśnie genach [26].

Ostatnio coraz częściej pojawiają się dowody potwierdzające znaczenie epigenetyki w patogenezie raka. Definicja zmian epigenetycznych obejmuje dziedziczne zmiany w ekspresji genów niezwiązane ze zmianami w sekwencji DNA [25, 28]. Pozagenowe rozregulowanie procesów fizjologicznych w raku odbywa się na kilku poziomach, obejmując m.in. metylację DNA [29]. Metylacja cytozyn w genomowym DNA jest zjawiskiem powszechnym, poza tzw. wyspami CpG w sekwencjach promotorów, z reguły niepodlegającymi takiej modyfikacji. Kowalencyjne przyłączenie grup metylowych (–CH3) do nukleotydów cytozynowych w obrębie wysp CpG promotora genu supresorowego nowotworu może prowadzić do całkowitego zahamowania transkrypcji tego genu, co obserwuje się w wielu przypadkach kancerogenezy [25]. Inne epigenetyczne modyfikacje przyczyniające się do rozwoju RJG to acetylacja histonów, dezorganizacja chromatyny, remodeling białek czy wyciszanie genów za pośrednictwem niekodujących cząsteczek RNA [28].

Podsumowanie

Mutacje w opisanych genach niosą ze sobą duże ryzyko rozwoju RJG. Wywołane przez nie zmiany w szlakach biochemicznych prowadzące do kancerogenezy są stosunkowo dobrze poznane. Pojawiają się one jednak w populacji stosunkowo rzadko – łącznie do 5% przypadków dziedzicznego RJG. Dużą część pozostałych dziedzicznych predyspozycji do rozwoju RJG przypisuje się kombinacji znacznie bardziej powszechnych zmian, w genach o niższej penetracji, które w sposób tylko umiarkowany zwiększają ryzyko zachorowania. Podobnie jak w wielu innych chorobach dodatnią korelację z rozwojem RJG odnotowano dla polimorfizmu takich genów, jak: TP53 (gen dla białka supresorowego nowotworów), NAT2 (gen dla N-acetylotransferazy 2), GSTM1 (gen dla jednego z izoenzymów S-transferazy glutationowej), CYP1A1 (gen dla jednego z białek rodziny cytochromu P450), STK15 (przypuszczalny onkogen kodujący kinazę serynowo-treoninową), TIMP2 (gen dla tkankowego inhibitora metaloproteinazy 2), MMP (gen dla metaloproteinaz). Prawdopodobnie jednak takich genów o niskiej penetracji odgrywających pewną rolę w dziedzicznej predyspozycji do RJG jest znacznie więcej. W marcu 2003 roku w Wielkiej Brytanii rozpoczął się wieloletni projekt badawczy mający na celu identyfikację takich genetycznych predyspozycji na podstawie zakładanej grupy badawczej liczącej 20 000 przypadków [30]. Wiedza ta jest niezbędna, aby trafnie szacować ryzyko rozwoju RJG w indywidualnych przypadkach, odpowiednio wcześnie diagnozować raka i stosować właściwie dobrane, najefektywniejsze leczenie. Lepsze zrozumienie dziedzicznej podatności na zachorowanie może też pomóc w opracowaniu skutecznej profilaktyki uwzględniającej różny udział czynników genetycznych w patogenezie RJG: od całkowitego zdominowania procesu kancerogenezy do zaledwie niewielkiej roli modyfikującej wpływ diety, trybu życia i substancji toksycznych [4, 30].

Piśmiennictwo

 1. McHugh SM, O’Donnell J, Gillen P. Genomic and oncoproteomic advances in detection and treatment of colorectal cancer. World J Surg Oncol 2009; 7: 36.  

2. Ahnen DJ. The American College of Gastroenterology Emily Couric Lecture – the adenoma-carcinoma sequence revisited: Has the era of genetic tailoring finalny arrived? Am J Gastroenterol 2011; 106: 190-8.  

3. Lindor NM, McMaster ML, Lindor C, et al. National Cancer Institute, Division of Cancer Prevention, Community Oncology and Prevention Trials Research Group; Concise handbook of familial cancer susceptibility syndromes – second edition. J Natl Cancer Inst Monogr 2008; 38: 1-93.  

4. Gil J, Stembalska A, Łaczmańska I i wsp. Sporadyczny rak jelita grubego – czynniki modulujące indywidualną wrażliwość na zachorowanie. Wspolcz Onkol 2010; 14: 211-6.  

5. Pasz-Walczak G, Jesionek-Kupnicka D, Kubiak R i wsp. Podstawowe mechanizmy kancerogenezy w jelicie grubym. Wspolcz Onkol 2004; 8: 303-7.  

6. Sheng JQ, Cui WJ, Fu L, et al. APC gene mutations in Chinese familial adenomatous polyposis patients. World J Gastroeneterol 2010; 16: 1522-6.  

7. Enholm S, Hienonen T, Suomalainen A, et al. Proportion and phenotype of MYH-associated colorectal neoplasia in a population-based series of Finnish colorectal cancer patients. Am J Pathol 2003; 3: 827-32.  

8. Chen SP, Tsai ST, Jao SW, et al. Single nucleotide polymorphisms of the APC gene and colorectal cancer risk: a case control study in Taiwan. BMC Cancer 2006; 6: 83.  

9. Phelps RA, Chidester S, Dehghanizadeh S, et al. A two-step model for colon adenoma initiation and progression caused by APC loss. Cell 2009; 137: 623-34.

10. Janssen KP, Alberici P, Fsihi H, et al. APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. Gastroenterology 2006; 131: 1096-109.

11. Jančik S, Drábek J, Radzioch D, Hajduch M. Clinical relevance of KRAS in human cancers. J Biomed Biotechnol 2010; 2010: 150960.

12. Zhu CQ, Santos G, Ding K i wsp. Znaczenie KRAS i EGFR jako biologicznych markerów odpowiedzi na leczenie erlotynibem w badaniu BR.21 przeprowadzonym przez National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2008; 26: 4268-75.

13. Liao J, Wolfman JC, Wolfman A. K-ras regulates the steady-state expression of matrix metalloproteinase 2 in fibroblasts. J Biol Chem 2003; 278: 31871-8.

14. Nielsen M, van Steenbergen L, Jones N, et al. Survival of MUTYH-associated polyposis patients with colorectal cancer and matched control colorectal cancer patients. J Natl Cancer Inst 2010; 102: 1724-30.

15. Ali M, Kim H, Cleary S, et al. Characterization of mutant MUTYH proteins associated with familial colorectal cancer. Gastroenterology 2008; 135: 499-507.

16. Farrington SM, Tenesa A, Barnetson R. Germline susceptibility to colorectal cancer due to base-excision repair gene defects. Am J Hum Genet 2005; 77: 112-9.

17. Pino MS, Mino-Kenudson M, Wildemore BM, et al. Deficient DNA mismatch repair is common in Lynch syndrome-associated colorectal adenomas. J Mol Diagn 2009; 11: 238-47.

18. Drescher KM, Sharma P, Lynch HT. Current hypotheses on how microsatellite instability leeds to enhanced survival of Lynch syndrome patients. Clin Dev Immunol 2010; 2010: 170432.

19. Boland CR, Koi M, Chang DK, et al. The biochemical basis of microsatellite instability and abnormal immunohistochemistry and clinical behavior of Lynch syndrome: from bench to bedside. Fam Cancer 2008; 7: 41-52.

20. Celentano V, Luglio G, Antonelli G, et al. Prophylactic surgery in Lynch syndrome. Tech Coloproctol 2011, 15: 129-34.

21. Dherin C, Gueneau E, Francin M, et al. Characterization of a highly conserved binding site of MLH1 required for exonuclease I-dependent mismatch repair. Mol Cell Biol 2009; 29: 907-18.

22. Hsieh P, Yamane K. DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev 2008; 129: 391-407.

23. Ferreira S, Lage P, Sousa R, et al. Familial colorectal cancer type X: clinical, pathological and molecular characterization. Acta Med Port 2009; 22: 207-14.

24. Penegar S, Wood W, Lubbe S, et al. National study of colorectal cancer genetics. Br J Cancer 2007; 97: 1305-9.

25. Migliore L, Migheli F, Spisni R, Coppede F. Genetics, cytogenetics, and epigenetics of colorectal cancer. J Biomed Biotechnol 2011; 2011: 792362.

26. Baba Y, Nosho K, Shima K, et al. Aurora-A expression is independently associated with chromosomal instability in colorectal cancer. Neoplasia 2009; 11: 418-25.

27. Śmigiel R, Stembalska A, Stal A, et al. The microstellite instability in patients with colon cancer treated in Lower Silesia. Adv Clin Exp Med 2006; 1: 29-36.

28. van Engeland M, Derks S, Smits KM, et al. Colorectal cancer epigenetics: complex simplicity. J Clin Oncol 2011; 29: 1382-91.

29. Pinheiro M, Ahlquist T, Danielsen SA, et al. Colorectal carcinoma with microsatellite instability display a different pattern of target gene mutations according to large bowel site of origin. BMC Cancer 2010; 10: 587-96.

30. Park KS, Kim SJ, Kim KH, Kim JC. Clinical characteristics of TIMP2, MMP2 and MMP9 gene polymorphism in colorectal cancer. J Gastroenterol Hepatol 2011; 26: 391-7.
 
 
 
© 2014 Termedia Sp. z o.o. All rights reserved.